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KANTS is a swarm intelligence algorithm [1], proposed in [10, 2] for data clustering and 

classification. The term KANTS derives from Kohonen Ants, since the algorithm was partially inspired 

by Kohonen’s Self-Organizing Maps [9]. The method was also based on Chialvo and Millonas’ Ant 

System [6] and its working mechanisms are very similar to that model. However, differences in the 

local rules and pheromone concept makes KANTS a singular system, very different not only from 

Self-Organizing Maps and Ant System, but also, to the extent of the authors knowledge, from other 

ant-based clustering algorithms.  

Instead of the 2-dimensional homogeneous lattice graph (or square grid) used in the Ant System [6] as 

the habitat (or environment) for the ants, KANTS swarm moves on a square grid with one vector of 

real-valued variables mapped to each cell or node. The agents also differ from Chialvo and Millonas 

model, since KANTS uses data samples (with the same size as the environmental vectors) as artificial 

ants while Ant System is a simplified model of real ant colonies. KANTS move through the grid, 

changing the values of the vectors (following Kohonen’s approach [9]) so that they tend to be closer to 

their own values. At the same time, the ants are attracted to the sections of the habitat where the 

Euclidean distance between the ant’s vector and the environmental vectors in that particular section is 

minimized. This means that the ants communicate via the environment, by changing that same 

environment, an ability that is a fundamental part of a process known as stigmergy [8]. The simple set 

of rules of the model leads to a global behavior in which clusters of ants/samples belonging to the same 

class
1
 tend to emerge.  

As stated above, the ants act upon the environmental grid, changing the values of vectors. Therefore, 

the grid of vectors acts as a kind of pheromone map that is shaped by the ants. In our exploration of 

KANTS as a swarm art tool, the maps are used for generating 2-dimensional colored images in the 

RGB system. The vectors are directly translated to the R, G, and B values (three-variable data samples 

are used here, which makes it easy to translate the values into RGB images, but other forms of 

translating vectors to RGB can be devised). Since the ants tend to cluster, thus changing the values in 

that region, it is expected that the pheromone map, after a certain number of iterations, shows non-

random patterns, like a kind of fuzzy patchwork. Below, we give some examples of a recent project 

that uses KANT for generating abstract painting that result from the interaction of data samples, but 

first let us describe the simplified version of KANTS that is currently being used in our swarm art 

projects. The reader is referred to [10] for a detailed description of the original algorithm
2
. Please note 

that although KANTS is different from traditional Ant Algorithms [1], it is stigmergic, and directly 

inspired by the Ant System: its working mechanisms are extensions of the set of equations of Chialvo 

and Millona’s model. Therefore we use here the metaphors and the terminology associated with this 

kind of algorithms and models: ants, pheromone, reinforcement and evaporation. With this in mind, 

we will describe now the KANTS algorithm in detail. 

KANTS is based on the emergent properties of a set of simple units that travel through a grid. In 

KANTS, the grid is mapped to an array with size      , in which   is the dimension of the data 

vectors of the target problem, and     is the dimension of the grid. That is, each cell in the habitat is 

mapped to a  -dimensional vector. In addition, the ants also “carry” a  -dimensional vector that 

corresponds to a data sample: each ant is in fact one data sample of the data set. The main idea of the 

algorithm is having data samples (ants) moving on (and updating a) an array of real-valued vectors 

with the same size of the samples. The dimension of the habitat affects the performance. In general, a 

ratio between the number of data samples and the size of the grid (measured in number of cells) in the 

range           provides a good basis for KANTS clustering ability, as given by [2]. 

                                                                   
1 Class here is in the context of statistical classification and cluster analysis. 
2 The source code of the original KANTS is available at: 

https://forja.rediris.es/plugins/scmsvn/viewcvs.php/KohonAnts/?root=geneura 



The values of the grid’s vectors are initially set to a random value with uniform distribution in the 

range        . Then, the ants are randomly placed in the grid (after the vectors they “carry” are also 

normalized within the range      ). In each iteration, each ant is allowed to move to a different cell of 

the habitat and modify that cell’s vector values.  The ants move to neighboring cells using equations 1 

and 2, taken from Ant System [5]. 
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Equation 1 measures the relative probability of moving to a cell   with pheromone density  . The 

parameter   (     is associated with the osmotropotaxic sensitivity. Osmotropotaxis has been 

recognized by Wilson [12] as one of two fundamental types of an ant’s sensing and processing of 

pheromone, and it is related to instantaneous pheromone gradient following. In other words, parameter 

  controls the degree of randomness with which the ants follow the gradient of pheromone. The 

parameter   (     defines the sensory capacity (   ), which describes the fact that each ant’s ability 

to sense pheromone decreases somewhat at high concentrations. This means that an ant will eventually 

tend to move away from a trail when the pheromone reaches a high concentration, leading to a peaked 

function for the average time an ant will stay on a trail, as the concentration of pheromone is varied.  

Equation 2 models the probability of an ant moving from cell   to a specific cell   that belongs to the 

Moore neighborhood ( ) of  :     , defined after a discretization of time and space, is the probability 

of moving from cell   to  ;      is given by equation 1 and      is set to   if the cell   is within the 

Moore neighborhood (with range   ) and   otherwise. The pheromone density   in equation 1 is 

defined as the inverse of the Euclidean distance            between the vector carried by ant        and 

the vector in cell       at time-step t,          – see equation 3. That is, the shorter the Euclidean 

distance is, the more intense is the pheromone level. Please note that in this algorithm the pheromone 

levels are not absolute values. Instead, they are relative quantities that depend on the ant that inspects 

the cell.  

  
 

                
 (3) 

With these rules, an ant tends to travel to cells that are mapped to vectors which are “closer” to its own 

vector. (Please note that      is a data sample and therefore constant, while the vectors mapped by the 

grid are modified by the ants). The ants update the vector in the cell where they are currently on, plus 

the vectors in the cell’s Moore neighborhood (with a user-defined range   ) according to equation 4, 

where           is a learning rate that controls how fast the cells’ vectors acquire the information 

carried by the ants. This is the equation that modifies the environment and shapes the images given 

below. Please note that this reinforcement action is proportional to the Euclidean distance between the 

ant’s vector and the cell’s vector: an ant tends to travel to cells with vectors more “similar” to its own, 

and, at the same time, they change the values of that cell, approximating them to their own values, at a 

rate that is proportional to the distance between the vectors.  

                                                                                 (4) 

                                           (5) 

Finally, the grid vectors are all evaporated in each time-step. Evaporation, in KANTS, is done by 

updating the vectors with Equation 5, where           (usually a small value, in the range 

           ) is the evaporation rate and          is the vector’s initial state (at    ). Basically, the 

evaporation step “pushes” the vectors towards their initial values.  

In total, there are six parameters that need to be set before the run:  , , ,  and Moore neighbordhood 

ranges    and   , plus the size of the environment    , which must be set to a value that allows the 

communication and self-organization of the swarm (too big, and the ants may become too isolated for 

order to emerge; too small, and the ants won’t able to move freely). Such a large parameter set can 



make some experiments with KANTS difficult. We are currently trying to reduce the set of parameters 

by using the state of the system during the run. For instance,   learning rate is now controlled by the 

average Euclidean distance of the ants to their neighboring cells (Moore neighborhood with range set 

to 1). This means that the learning rate decreases over time (just like in Kohonen’s Self-Organizing 

Maps), favoring exploration in the beginning of the run, and moving towards more exploitive behavior 

when the run approaches the end. In addition, the range    is now defined for each ant and it is self-

regulated by the number of neighbors (again, Moore neighborhood with range 1). In the first version of 

KANTS, local information and decisions cause the emergence of global patterns. We are now using 

local information for self-regulating the algorithm, thus reducing the tuning effort.  

On one hand, reducing the parameter set or self-regulating some of the parameters facilitate the 

experiments and the analysis of the algorithm when clustering ability and self-organization of the 

swarm is the main objective of the research. On the other hand, a larger parameter set permits a wider 

range of aesthetical experimentation in swarm art projects. Some of the work that is currently being 

done with KANTS on swarm art uses fixed learning rate   and range   . 

Another problem with the original KANTS was the tendency for formed clusters to “break”. The 

dynamics of the swarm, with every ant moving in every time-step, did not favor the stability of the 

clusters. Therefore, we have recently introduced a probably test that restricts the movement of the ants: 

an ant only moves if a random value uniformly distributed in the range [0,1] is above a probability 

value   defined by Equation 6: 

  
 

         
                       (6) 

where          is the averaged Euclidean distance to the neighboring cells (range 1),              is 

the averaged Euclidean distance to the neighbors and           is the number of ants in the Moore 

neighborhood (including the ant itself). If there are no other ants in the neighborhood except the ant 

itself,              is set to 1. The pseudo-code of the algorithm is given below. 

Algorithm KANTS 

1. Initialize an array       with random values in the range [0, 1], where     is the size of the habitat 
and   is the dimension of the data samples 

2. Store   data samples in an array of size    ,           , where   is the number of variables of the vectors. 
3. Distribute the ants randomly on the environment.  
4. For each ant do: 

5. Update habitat (grid) vectors: apply equation 4 to the vectors in the Moore neighborhood (range   ) 
of the ant. 

6. Determine           (number of ants in neighborhood, with range 1), average distance to neighbors 
and average distance to the neighboring cells. 

7. For each ant do if random[0,1] <   (  is defined by equation 6): 
8. Compute      for each possible destination cell (not occupied and within the Moore neighborhood 

with range                     ). 
9. Decide where to go by roulette wheel selection. Move to selected cell.  

10. For each cell in the environment evaporate pheromone: apply equation 5 to the vector in the cell. 
11. If stop criteria not met return to 4 

 

With this set of equations and rules, the ants shape the environment, communicate via that 

environment, self-organize, and, after a certain number of iterations, congregate in clusters that more 

or less represent each class in the data set. Figure 1 exemplifies the KANTS’ stigmergic behavior when 

applied to the iris flower data set [7]. The iris dataset consists of     samples of vectors, 50 of each of 

three classes of iris flowers. Each vector has   variables, representing the   features from each sample. 

Therefore, KANTS works with a population of     ants in a       habitat. Parameters   and   are 

set to    and     respectively, while   is set to     and evaporation rate   is set to     . Figure 1 

shows the state of the swarm at different time-steps. Each color represents a class. The cluster start to 

emerge at early iterations (see     , which correspond to     movements). At         , the 

Setosa cluster (red) is defined and separated. Versicolor and Viriginica are not separable but the 

algorithm has an interesting capacity of congregating Versicolor  (green) and Virginica (blue) samples  

in different regions of the habitat. These results and others in [2, 10] validate the algorithm as a non-

supervised clustering algorithm.  



 

      
                                  

 

Figure 1. KANTS: position of the ants in the grid. Iris flower data set. At        the swarm had completed 9071 movements. 

Mora et al. [10] also describe a classification tool that uses information retrieved by the state of swarm.  

However, the pheromone maps (i.e., the environment) are used by the algorithm only for the ants to 

communicate, being discarded by the end of the run. The important components of KANTS as a 

problem solver are the clusters and the classification maps. Meanwhile, Fernandes started to 

experiment with KANTS as a swarm art technique, following his line of work on generative art [3, 4, 

11]. In [5], Fernandes used data extracted from Electroencephalogram (EEG) signals of sleeping 

patients for generating the swarm. Then, after running KANTS, he translated the resulting pheromone 

maps into grey-scale triptychs. 

Sleep data is an alluring raw material for the swarm art practitioner. Since the ants tend to cluster, thus 

changing the values in the clustering region, it is expected that the pheromone map, after a certain 

number of iterations, shows non-random patterns, like a kind of a fuzzy patchwork. In addition, the 

stochastic nature of the process and the size and range of the data samples, make these sleep signatures 

unique, not only for each patient, but also for each night’s sleep. The resulting pherogenic drawings 

not only represent an interesting imagery related to human sleep, but can also be a basis for a 

conceptual framework for artists and scientists to work with. For long, sleep was a mysterious state 

that science and philosophy tried to study and interpret. In addition, dreams, an inseparable feature of 

the human sleep, added a mystic aura to this physiological state. Having the opportunity of generating 

representations of a night’s sleep with a novel bio-inspired and self-organized algorithm is surely 

inspiring. Furthermore, the whole process is based on a kind of distributed creativity, i.e., the drawings 

are in part generated by the person/patient, since the data samples shape the environment, and in part 

created by the swarm and its local rules, from which global and complex behavior emerges. Under this 

motivation, Fernandes, with Mora and Merelo, have been recently working on the the Pherogenic 

Sleep Drawings project. With a representation of the sleep EEG that describes the signal with three 

variables, they use KANTS for generating three-variable pheromone maps which are then translated 

into a RGB image (see Figure 2).   

 

  

Figure 2. Pherogenic Sleep Drawings. Two pheromone maps generated by sleep data from two different patients.     ; 
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Figure 3. Carlos M. Fernandes, Abstracting the Abstract #4, 2012; (left) Kandinsky’s Improvisation, which was used as a source 

of data samples for KANTS; (right) the resulting pheromone map, after     iterations. Size of the data set:       samples 

(taken from a         digital image of Kandinsky’s painting). Size of the grid:        . Parameters:     ;      ;  
   ;        ;        ;     .;     

More recently, Fernandes devised a project called Abstracting the Abstract, in which KANTS swarms 

are used for “reinterpreting” famous nonfigurative paintings of the twentieth century. In this work, the 

data samples are extracted from the paintings. The original image is first translated to an array with 

RGB values. Then, those values are used as KANTS data samples, i.e., the data samples represent the 

RGB values of the original painting. The resulting pheromone map (or pherogenic drawing) is 

translated again to RGB, displaying a range of chromatic values that are similar to the original, 

although with radically different patterns. Figure 3 shows an example with a Wassily Kandinsky’s 

painting. Abstracting the Abstract is Fernandes’s proposal for GECCO’s Evolutionary Art 

Competition. Its motivation, details and complete set of images are described in the artist statement.  
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